A Cell-Free Translocation System Using Extracts of Cultured Insect Cells to Yield Functional Membrane Proteins
نویسندگان
چکیده
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.
منابع مشابه
A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translo...
متن کاملProteases Detection of invitro Culture of Midgut Cells from Hyalomma anatolicum anatolicum (Acari: Ixodidae)
Proteases play a key role in protein digestion in ticks and other haematophagous insects. Our understanding of blood meal digestion in digestive system of ticks can be very useful for better understanding of basic rules for control of ticks. Cells of the midgut endocytose blood components. Blood proteins uptake by midgut cells, suggesting the presence of proteases in the midgut cells. In this...
متن کاملC2C12 Cell Line is a Good Model to Explore the Effects of Herbal Extracts on GLUT4 Expression and Translocation
Objective: GLUT4 is a type of glucose transporter and plays a central role in whole-body metabolism of carbohydrates. The muscle is the major site of GLUT4 and cell line models, to explore GLUT4 behaviors under new therapeutic approach, such as herbal components, should be evaluated. Here, C2C12 cell line is evaluated for GLUT4 translocation from intracellular compartment into the cell membrane...
متن کاملA Model to Study the Phenotypic Changes of Insect Cell Transfection by Copepod Super Green Fluorescent Protein (cop-GFP) in Baculovirus Expression System
Background: Baculovirus expression system is one of the most attractive and powerful eukaryotic expression systems for the production of recombinant proteins. The presence of a biomarker is required to monitor transfection efficiency or protein expression levels in insect cells. Methods: The aim of this study was to construct a baculovirus expression vector encoding a copepod super green fluore...
متن کاملMorphology and Ultrastructure of Mouse Polarized Endometrial Epithelial Cell Monolyer in Vitro
Purpose: The objective for this study is to investigate the morphology and ultrastructure of mouse endometrial epithelial cell monolayer cultured on matrigel in dual-chambered system as an in vitro mouse endometrial epithelial cell culture model that mimics structural and functional properties of the endometrial epithelium in vivo. Materials and Methods: Mouse endometrial epithelial cells were...
متن کامل